Impact of the End-System
and Affinities on the Throughput of High-Speed Flows

Nathan Hanford, Vishal Ahuja,

Matthew K Farrens, and Dipak Ghosal
Department of Computer Science
University of California
Davis, CA
{nhanford, vahuja, mkfarrens,

dghosal}@ucdavis.edu

ABSTRACT

Network throughput is scaling-up to higher data rates while
processors are scaling-out to multiple cores. In order to optimize
high speed data transfer into multicore end-systems, network
adapter offloads and performance tuning have received a great
deal of attention. However, much of this attention is focused on
how to set the tuning parameters and which offloads to select for
higher performance and not why they do (or do not) work. In this
study we have attempted to address two issues that impact the
data transfer performance. First is the impact of the processor
core affinity (or core binding) which determines the choice of
which processor core or cores handle certain tasks in a network- or
I/O-heavy application running on a multicore end-system. Second
issue is the impact of Ethernet pause frames which provides a
link layer flow control in addition to the end-to-end flow control
provided by TCP. The goal of our research is to delve deeper into
why these tuning suggestions and this offload exist, and how they
affect the end-to-end performance and efficiency of a single, large
TCP flow.

Categories and Subject Descriptors

C.2.2 [Computer-Communication Networks]|: Network Pro-
tocols; C.2.4 [Distributed Systems]: Client/server; C.2.5
[Local and Wide-Area Networks|: Internet (e.g., TCP/IP);
C.2.m [Miscellaneous|: Network performance analysis

Keywords

40 Gbps Network, ESnet, Multi-core Affinitization, End-system
Performance, high-speed network, Flow Affinity, Application
Affinity, RPS, RFS

1. INTRODUCTION

Several physical constraints have contributed to a processing
core to hit a clock speed “wall”. On the other hand, the data rates
in optical fiber networks have continued to increase, with the
physical realities of scattering, absorption and dispersion being

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full
citation on the first page. Copyrights for third-party components of this work must
be honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).

ANCS’14, October 20-21, 2014, Los Angeles, CA, USA.

ACM 978-1-4503-2839-5/14/10.

http://dx.doi.org/10.1145/2658260.2661772.

Mehmet Balman,
Eric Pouyoul, and Brian Tierney
ESnet
Lawrence Berkeley Labs
Berkeley, CA

mbalman@lbl.gov, lomax@es.net,
bltierney@es.net

ameliorated by better optics and precision equipment. A similar
situation holds for short-range copper networks with better quality
conductors and better shielding. TCP is a reliable, connection-
oriented protocol which guarantees in-order delivery of data from a
sender to a receiver. There is a certain amount of sophistication re-
quired to implement the functionalities of the TCP protocol which
are all instrumented in the end-system since it is an end-to-end
protocol. As a result, most of the efficiencies that improve upon
current TCP implementations fall into two categories. First, there
are offloads which attempt to push TCP functions at (or along
with) the lower layers of the protocol stack (usually hardware,
firmware, or drivers) in order to achieve greater efficiency at the
transport layer. Second, there are tuning parameters, which place
more sophistication at the upper layers (software, systems, and
systems management). Within the category of offloads, this work
focuses on pause frames interesting. Pause frames in Ethernet
support link layer flow control by allowing a receiver to inform
the upstream node or router to pause sending data as it requires
more time to process data that it has already received.

Within the category of tuning parameters, this work focuses
on affinity. Affinity (or core binding) is essentially the decision
regarding which resources to use on which processor in a net-
worked multiprocessor system. Message Passing in the Linux
network receive process in modern systems principally allows
for two possibilities: First, there is interrupt processing (usually
with coalescing). In this process, the NIC interrupts the procesor
once it has received a certain number of packets. Then, the NIC
transmits the packets to the processor through DMA and the NIC
driver and the OS kernel continue the protocol processing until
the data is ready for the application [2]. Second, there is NIC
polling (known in Linux as the New API for networks (NAPI)),
where the Kernel polls the NIC to see if there is any network data
to receive, and if there is, processes the data up the network stack
as mentioned above. In either case, there are two types of affinity:
1) Flow affinity which determines the core that is interrupted
to process the network flow and 2) Application affinity which
determines the core that executes the application process that
receives the network data. Flow affinity is set by modifying the
hexadecimal core descriptor in /proc/sys/<irq#>/smp_affinity.
Application affinity can be set through taskset or similar tools.

2. EXPERIMENTAL SETUP

There are many valid arguments in favor of various NIC of-
floads. Furthermore, NIC manufacturers typically offer many
tuning suggestions to get the most out of the high-performance
hardware. However, light is rarely shed on the empirical rationale
for these tuning suggestions and offloads. A valuable resource
for tuning parameters obtained from careful experimentation on



ESnet’s 100 Gbps testbed is available at http://fasterdata.es.net.
ESnet has published a number of papers detailing the experiments
that have led to their tuning suggestions. For our experiments,
we considered data transfer between two identical 12-core Sandy
Bridge host with 40 Gbps NICs connected over the 100 Gbps
ESnet testbed. We used iperf3 in zero-copy mode to exhaustively
test all 144 combinations of Flow and Application affinity with
pause frames on and then off. Finally, we used Oprofile on the
receiver to monitor a variety of hardware counters in order to
identify the cause of the data transfer performance.

3. SUMMARY OF RESULTS

With pause frames on, we observed packet losses at the up-
stream router. These losses resulted in TCP congestion control to
be invoked which contributed to large throughput variance in the
experimental runs. It should be noted that this is a somewhat
unusual scenario because of the “quiet” nature of the testbed.
Specifically, there was no other traffic through the router and as a
result it could dedicate a large buffer to the single flow. However,
it still serves as a reminder to avoid setting pause frames on in
pause frame enabled routers as they could lead to buffer bloat
and potential losses.

Both our current and previous work [3] concluded that there
exists three different performance categories corresponding to the
following affinitization: 1) Same Socket Same Core (i.e., both Flow
and Application affinitized to the same core) reaches a throughput
of around 20 Gbps; 2) Different Sockets (thus Different Cores)
reaches a throughput of around 28 Gbps; and 3) Same Socket
Different Cores reaches a throughput of around 39 Gbps. While
changing the OS (from CentOS running a 2.6 kernel to Fedora
running a 3.13 kernel) and updating the NIC driver improved the
performance, the relative performance for the three affinitization
settings remained the same.

Oprofile hardware counter results showed that the main resource
consumed was the CPU. This was reflected both in terms of the in-
structions retired and unhalted clock cycles. When these counters
were divided by the amount of data transferred, the efficiency of dif-
ferent affinitizations could be compared. This is shown in Figure 1
for the case with pause frames on. The case where flow and applica-
tion were affinitized to the same core had by far the worst efficiency
measured in terms of CPU-utilization per Gigabyte transferred.
Due to the correlation between cache and memory transactions and

Instructions Retired /
Throughput (Gbps)

z -
= ®
b= @
< °

5 ;e
Ss

m© 4 L
2l o

21080
<2 ®

i

0 1 4 5 6_ .7 8 9 10 11
Flow Affinity

Figure 1: The width of the bubbles represents the amount of
instructions retired divided by the throughput in Gbps for each
of the 144 tests.

CPU utilization, it appears that the NIC driver could be spinning
while waiting for memory. A possible explanation is that using two
different cores on the same socket doubles the amount of L1 cache
available to the NIC driver and the application in comparison to
the case when they are both on affinitized to the same core.

4. CONCLUSION AND FUTURE WORK

One of the most important results of the clock speed wall, (or
the “hiatus” of Moore’s law) is that the line between intra-system
and inter-system communication is rapidly blurring. For one
processor core to communicate with another, data must traverse
an intra-system (on-chip) network. For large-scale data replication
and coherency, data must traverse a WAN. How are these net-
works meaningfully different? WAN data continues to become less
of a limiting factor, and routers and networks are becoming more
reliable and more easily reconfigurable. At the same time, intra-
system networks are becoming more complex (due to scale-out sys-
tems and virtualization), and perhaps less reliable (as energy con-
servation occasionally demands that parts of a chip could be slowed
down, or turned off altogether). When discussing affinitization, it
becomes obvious that despite these changes, distance and locality
still matter, whether the network is “large” or “small”. Therefore,
in the future, the most efficient solution may be not only to inte-
grate a NIC onto the processor die [4], but perhaps even integrate
the functionality with existing I/O structures, such as the north
bridge. However, the feasibility of doing so may be years away.

In the meantime, other NICs and especially, other NIC drivers
are being tested in similar ways to see if results are similar, and
if generalizations can be made. The relatively recent advance-
ment in NIC drivers that automatically switch between interrupt
coalescing and NAPIT is also being tested. Finally, results for prac-
tical, multi-stream TCP, and UDT GridFTP transfers are being
tested along these lines. One future goal could be to implement
a lightweight middleware tool that could optimize affinitization
on a larger scale, extending the work that has been carried out
on Cache Aware Affinitization Daemon [1].

5. ACKNOWLEDGMENTS

This research used resources of the ESnet Testbed, which is
supported by the Office of Science of the U.S. Department of
Energy under contract DE-AC02-05CH11231. This research was
also supported by NSF grant CNS-0917315.

6. REFERENCES

[1] AHUJA, V., FARRENS, M., AND GHOSAL, D. Cache-aware
affinitization on commodity multicores for high-speed
network flows. In Proceedings of the eighth ACM/IEEE
symposium on Architectures for networking and
communications systems (2012), ACM, pp. 39-48.

[2] BENVENUTI, C. Understanding Linuz Network Internals.

O’Reilly Media, 2005.

HANFORD, N., AHUJA, V., BALMAN, M., FARRENS, M. K.,

GHOSAL, D., Pouyour, E., AND TIERNEY, B.

Characterizing the impact of end-system affinities on the

end-to-end performance of high-speed flows. In Proceedings of

the Third International Workshop on Network-Aware Data

Management (New York, NY, USA, 2013), NDM ’13, ACM,

pp. 1:1-1:10.

[4] Liao, G., ZHU, X., AND BHUYAN, L. A new server i/o
architecture for high speed networks. In High Performance
Computer Architecture (HPCA), 2011 IEEE 17th
International Symposium on (2011), IEEE, pp. 255-265.

(3



